Perelman’s Recent Work on the Classification of 3-Manifolds
نویسندگان
چکیده
Interior methods are a pervasive feature of the optimization landscape today, but it was not always so. Although interior-point techniques, primarily in the form of barrier methods, were widely used during the 1960s for problems with nonlinear constraints, their use for the fundamental problem of linear programming was unthinkable because of the total dominance of the simplex method. During the 1970s, barrier methods were superseded, nearly to the point of oblivion, by newly emerging and seemingly more efficient alternatives such as augmented Lagrangian and sequential quadratic programming methods. By the early 1980s, barrier methods were almost universally regarded as a closed chapter in the history of optimization. This picture changed dramatically in 1984, when Narendra Karmarkar announced a fast polynomial-time interior method for linear programming; in 1985, a formal connection was established between his method and classical barrier methods. Since then, interior methods have continued to transform both the theory and practice of constrained optimization. We present a condensed, unavoidably incomplete look at classical material and recent research about interior methods.
منابع مشابه
Geometrization of 3-Manifolds via the Ricci Flow
184 NOTICES OF THE AMS VOLUME 51, NUMBER 2 Introduction The classification of closed surfaces is a milestone in the development of topology, so much so that it is now taught to most mathematics undergraduates as an introduction to topology. Since the solution of the uniformization problem for surfaces by Poincaré and Koebe, this topological classification is now best understood in terms of the ...
متن کاملGeometrization of 3-Manifolds via the Ricci Flow, Volume 51, Number 2
184 NOTICES OF THE AMS VOLUME 51, NUMBER 2 Introduction The classification of closed surfaces is a milestone in the development of topology, so much so that it is now taught to most mathematics undergraduates as an introduction to topology. Since the solution of the uniformization problem for surfaces by Poincaré and Koebe, this topological classification is now best understood in terms of the ...
متن کاملA Simple Proof of Perelman’s Collapsing Theorem for 3-manifolds
We will simplify earlier proofs of Perelman’s collapsing theorem for 3-manifolds given by Shioya-Yamaguchi [SY00]-[SY05] and Morgan-Tian [MT08]. A version of Perelman’s collapsing theorem states: “Let {M3 i } be a sequence of compact Riemannian 3-manifolds with curvature bounded from below by (−1) and diam(M3 i ) ≥ c0 > 0. Suppose that all unit metric balls in M3 i have very small volume at mos...
متن کاملA Proof of Perelman’s Collapsing Theorem for 3-manifolds
We will simplify the earlier proofs of Perelman’s collapsing theorem of 3-manifolds given by Shioya-Yamaguchi [SY00]-[SY05] and Morgan-Tian [MT08]. A version of Perelman’s collapsing theorem states that: “Let {M3 i } be a sequence of compact Riemannian 3-manifolds with curvature bounded from below by (−1) and diam(M3 i ) ≥ c0 > 0. Suppose that all unit metric balls in M3 i have very small volum...
متن کاملMinimal volume and simplicial norm of visibility n-manifolds and all 3-manifolds
In this paper, we present an elementary proof of the following result. Theorem A. Let Mn denote a closed Riemannian manifold with nonpositive sectional curvature and let M̃n be the universal cover of Mn with the lifted metric. Suppose that the universal cover M̃n contains no totally geodesic embedded Euclidean plane R2 (i.e., Mn is a visibility manifold ). Then Gromov’s simplicial volume ∥Mn∥ is ...
متن کاملMonopole Classes and Perelman’s Invariant of Four-manifolds
We calculate Perelman’s invariant for compact complex surfaces and a few other smooth four-manifolds. We also prove some results concerning the dependence of Perelman’s invariant on the smooth structure.
متن کامل